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PROPERTIES OF A DIFFERENTIAL GAME'S POTENTIAL™

A.I. SUBBOTIN and N.N. SUBBOTINA

A position differential game with fixed termination instant is examined. Stability
properties are investigated, consisting mainly in the formulation of necessary and
sufficient conditions satisfied by the differential game's value function (potential).
The infinitesimal form of the stability properties leads to differential inequalit-
ies generalizing the fundamental equation for the potential to the case when the
value function is nondifferentiable. As a corollary to the necessary and sufficient
conditions obtained for the differential game's potential, corresponding results are
presented for the optimal control problem. The paper relies on the results from /1
-~ 7/, borders on the studies in /8- 12/ and continues the work in /13-—15/.

1. We examine a differential game the motion in which is described by the equation

@) =f(@ @), u), v) (1.1

where u (t) & P (C R?, v(t) = Q C R are the controls of the first and second players, P and ()
are compacta and the functions f(:): (-—oe, 4] X R® X P X Q — R"™ satisfy the usual conditions
(see /3,4/). We assume that
minmax s'f (¢, 2, v, v) = max mins'f (t, z, u,v), (({£. z, s) & (—~o0, ¥} X R™ X R") (L.2)
u=P veQ vEN usEP
where s'f is the scalar product of vectors s and /. The differential game's payoff is pre-
scribed by the equality

v (z () = o (x (D) (1.3)

Here ¢ (-): R® — R is a continuous function, & is the fixed game termination instant.

In accord with the formalism in /4/ we identify the strategies of the first and second
players with the arbitrary functions U (-):(—o0,%] X R® — P, V (+): (— o0, ¥] X R* — (. The mo-
tions generated by such strategies are determined by a limit approach from the corresponding
sequences of Euler polygonal lines. The set of motions generated by strategy Uand departing
from the point z(f,) = 74 is denoted X (t4, Zy, U). The sheaf X (i, #4, V) of motions corresponding
to strategy V is denoted analogously. It has been established /4/ that a position different-
ial game has a value, i.e.,

min max y (X ({4, Ty U)) =maxminy (X (ty, 24, 1)) = co (4, 24)
U v
max v (X) = maxsc) ¥ (€ (+)), min y (X) = mingg, y (@ (-)), 2(-)=X

The quantity ¢, ({4, 4) is named the value of the differential game, defined for the initial
position (tx, @«). The function ({4, Zs«) = C; (fs, Tx) is called the value function or the potential
of the differential game. The investigation of the properties of the potential and of the
methods for computing it is of material interest since by having the potential available we
can determine relatively simply the players' optimal strategies (see /2,4/, for example).

Let us note a necessary condition satisfied by the potential of differential game (1.1)—
(L.3). Let the function ¢ (:): (— o0, ®] X R" — R satisfy in each bounded domain G C (— oo, 9] &
R™ the Lipschitz condition

le (@, o) —e(®, ) | <AG) [ — 2+ |2t + 2201, A = const (L.4)

The collection of such functions is denoted by the symbol Lip. It can be shown that the pot-
ential ¢, (-) of game (1.1)— (1.3) belongs to class lLip if the payoff function o (-) satisfies
a Lipschitz condition. By the Rademacher theorem /7/ the function ¢ (-)& Lip is differentiable
almost everywhere. The function ¢ (-)is called a generalized solution of the fundamental
equation of differential games theory if the equality

Eﬁ’a;i'—)—fminmaxf’(t*,z*,u,v)gradxc(t*,x*):0 (1.5)
usP veQ
grad, ¢ (f, T,) == (3¢ (ty, T,)/0%1, - - ., O (ty, 24)/0y)
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Properties of a differential game's potential 151

is fulfilled at each point (t,, Z4) at which the function ¢ (-) is differentiable. It is well
known (see /12/, for instance) that the potential ¢,(:) is a generalized solution of the funda-
mental Eq.(l.5) and satisfies the boundary condition ¢, (8. 2) = o (z). However, this necessary
condition is not sufficient. Examples can be given in which the fundamental Eq.(1.5) has an
infinite set of generalized solutions satisfying the boundary condition ¢ (%, z) = o (z) (z = R™).

In Theorem 2.1 below we have indicated necessary and sufficient conditions which a con-
tinuous potential must satisfy. Next, in Theorems 2.2 and 2.3 these conditions are defines
more exactly for the cases when the value function belongs to class Lip and is direction-
differentiable. The conditions indicated in Theorem 2.3 can be treated as a natural generaliz-
ation of the fundamental equation.

2. Let us consider the stability properties of functions (f, z) — ¢ (f, 7). These properties,
augmented by the boundary condition

c(®, 2) =02 (r = R" (2.1)

form necessary and sufficient conditions which must be satisfied by the potential of different-
ial game (l.1)-— (1.3). We remark that stability properties were introduced in /3,4/ for stable
bridges in an encounter-evasion game. The stability propertles can be defined in different
equivalent forms. In particular, we present below an infinitesimal form of the stability
property, which leads to a generalization of the fundamental equation.

We introduce some notation. Let (¢, 2,u,v) e (—oc, ¥} X R® X P X Q. We set

F (t, z, v) =co{f(t, z, u, v): u s P} (2.2)
Fy(t, 2, u) =co{f (¢, z, u, v): v= Q)

where co A is the convex hull of set A. By X, ({4, 24, v) and X, (f,. z,, u) we denote the sets of
solutions of the differential inclusions

Qe ), TOEFE @) ), GH<ESY ) =) (2.3)

respectively. We remark that for any ({4, #y) & (— o0, #] X R", u & P and v < Q the sets X, (t,,
Zy, V) and X, (4, T4, u) are nonempty and compact in the space of continuous functions z (:): [t
#] -~ R™. For a continuous function ¢ (-) (—o0, #] X R* -~ R we define two conditions:
(1) sup max maxmm [e(t, z(t)) — c(ty x)] <O
[CTE A
when (t,, r,) & (— oo, 0) X R" P [ty, ¥, vEEQ, 2(-) = X1 (tyer Ty V)
(1) inf min mln max [c(t, z(t)) —c(ty, 1)1 >0
e, %) 2 x()
when (t,,z,) S (— 00.19) X B t&[t,, 8] ues P, z(-)e= Xa (t,, 4o ) . Inequalities (1)
and (1,) are called, respectively, the conditions of u-and v-stability of function ¢ ().

Theorem 2.1. 1In order that a continuous function ¢ (-) (— oo, #] X R® — R be the potent-
ial of differential game (1.1)— (1.3), it is necessary and sufficient that it satisfy the
boundary condition (2.1) and the stability conditions (1.), (1,)

Theorem 2.1 follows from the results in /4/; it was proved in /15/ (pp.116-118).

The stability conditions (1,) and (1,) for a continuous function ¢ (-) can be determined in
various equivalent forms. Consider the following conditions:

2 sup max mmmax feft,x(t)) — ¢ty 2] <O
(t, %) v ()

(3) sup sup inf Ilm [e(ty + 8,2ty 4 8)) — c(ty, xy)]-671 <0
(. x) v =() oy

(4y) sup sup inf llm [e(tey +8,2(ty +08)) —c(ty,xy)]- 671 L0

(t,x) v x(:)0
(t*:z*)e(—wyﬂ)XR"’ vedld, 2()E X124, 0)
= [y, 0]

Conditions (2,), (3,) and (4,) are obtained from (2,), (3,) and (4) by a respective replacement of
v by u, of Qby P, of X, (ty, x4, Vyby X, (t4, T4, u); and of the symbols max, min, sup, inf, <, by
the opposite ones.

Lemma 2.1. Conditions (1,), (2.), (3.) and (4,) are equivalent.
Lemma 2.2. conditions (1), (2,), (3,) and (4,) are equivalent.

Proof of Lemma 2.1. The implications (2,) = (1), (22) = () = (3,) are trivial. It can be
shown that (2,) follows from ({,). Indeed, let (4, z,) = (—w, #)XR*, v Q, k is a positive integer,
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=@ — )b, i =1t, +id (i=0, 1,..., k. It follows from (1, that a motion ™ () = Xy (te 24 D)
exists satisfying the conditions

e (6™, ™M) ety 2 (=0, 1,00, &) (2.4)

Let us consider the sequence % (.) (k= 1,2,...) of such motions. Since X, (t, z,, ») is a compactum,
it contains the limit element =z* () of this sequence. From (2.4) and the continuity of func-
tion ¢ () it follows that c(, z* (1)) < ¢ (tyr T4) £OX << t<<¥; by the same token we have proved the
fulfillment of condition (2,). It remains to verify that (1,) follows from (3,). Assume the
contrary. Let condition (3,) be fulfilled, but let (tyy £,) = (— o0, ) X B, ve=Q,a >0, 1" {ter 8]
exist such that
min c (£, x (1°) > ¢ (t, T,) 4o, ()= X by Tga V) (2.5)
x(-)
Set

Tz () =max{te [t, et z () Cely T) +alt —5) (© — 1)1} (2.6)
The functional 1, () is upper-semicontinuous; therefore, in compactum X, {t,, z:., ) we can choose
a motion =z, (-) such that
To (24 () ::I:(‘”)‘T* () z()eXilh, 24, v) (2.7)
Let * = 7, (z, (*)), z* = 2, {t*); then
c %, z*) = c{ty, za) T (t* — 1), 6= (°— )@ (2.8)
From (2.5)— (2.7) follows *<¢. On the strength of (3,) there exist 8 e (0, —*) and motion
z* (1) & Xy {t«, 24, ») such that
e (t* 48, z* (t* 1+ 8)) < ¢ (byy 74) + 88 (2.9)
Consider the motion =z (-) = {z, (t) for ¢, <:<t* «* (1) for * << ¥, This motion is contained in
sheaf X, (t4, s v) and for it we have the valid inequality
c(t* =08, z(* +0) <elty, zi) T8 (t* 6 —t) (2.10)

following from (2.8) and (2.9). By the definition of functional =, () we obtain =, (z () = ¢* +
s, which contradicts the choice of the number (* (see (2.7)). Lemma 2.1 is proved. Lemma
2.2 can be proved analogously.

Thus far we have examined continuous functions ¢ (-). Now let ¢ (-}: (— oo, &] > H" — R,
¢ (-) =Lip. Let (ty, Z4) € (— 00,9) X R*, h & R". We use the following notation:

D¥c(ty, zy) | (1, 1) = im [e(t, + 8, 2, — AD) — e (ty, 24)] 67
0—+0
Dyc(ty. 2, ) (L B) = lim [e(t, + 8,24 + RO) — ¢ {ty, )] 67!
5~Fo
i.e., here we have introduced the upper and lower derivative numbers of function ¢ (-) at the
point (¢, z,) in the direction of an (n + 1)-dimensional vector (1, hy,. ... k). If D¥c(ty, Zy) |
(1, h) = Dyc (ty> z4) | (1, B), then at the point ({4, Z4) the function ¢ (-) has a derivative along
the direction of (1, h), which is denoted Dc(t,, z4) | (1, k). Below we use the following notation:

Ac (t*,z*, x ()1 6) = (t* -+ 6, x (t* + 6)) —C (t*a .‘l*)
Lemma 2.3. Let ¢ (') & Lip. The inequalities

inf lim Ac {ty, Zy 2 (+), 8) 871 < inf Dy (ty, 24) | (1, B) < inf lim Ac (ty, 2y, 2 (+), 8)- 87 (2.11)
x() §=To h %(+) 6--4-0

T () € Xy (ty Ty, V), B E Fy (ty, Ty, V)
sup lim Ac (ty, Ty 2 (+), 8) 87 < sup D¥c (ty, z4) | (1, ) < sup Tim Ac(ty, Z4 2 (), §) 87 (2.12)
x(:) §=%0 h x(+) 6—10

2 () &= Xy (byr T4, ), B Fy (ty, 2o w)
are valid for any (f4, Zy) E(—00,8) X B", v=Q, and u&E P,

Proof. Let us prove the first of inequalities (2.11). Let (i i) = (— o) X R?, ve Q, ¢
~ 0. We choose h, & F, (44, z,, #) and a sequence & (k= 1, 2,.. ), 84— -+0 as  k— o, such that

Himle (e, 4 8y 2+ 8k ) — (0, 2107 =D, 2) | (1 b)) < EDye (2} [ B e e P2y (2.13)
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From the continuity of the multivalued mapping {t,z)— Fi (¢, z, ¢} of (2.2} follows the existence
of a solution =z, (-} = X; {1, 2,, %) (see (2.3)) such that

@y (e + Ok) =2y + Oihy + g0y, (| 8k[— 0s K~ 00) (2.14)
We set
Te=[e(t, + 8 2, (6, -+ 8)) —c(t, -+ 8 2, + 8h)] 8 (2.15)
From (2.14), by virtue of the condition ¢ () e Lip, we obtain
rg—0, koo (2.18)
From (2.13)— (2.16) follows
21}) 6%0 Aclt, z =z (), 88" <L_1_i§ Actt,,
%_i_’n;{c @, + 0z, +h8)—cit,, 2 )18
i’?l Declty, )[4, B) e, heFi{t,, 2, v)

RO ST Ar

*

Since e>0 is arbitrary here, we obtain the first one of inequalities (2.11).
Now we chocse a motion z, ()& X, (f, 74, ») and a sequence & >0{(k=1,2,..., 8;—0 as k- o0
such that
. - -1 : -
it T Bety 5,2, 987 S lim At 5,02, (). 885 e (2.17)
From the continuity of mapping (4 z) — Fy (f, z, ») it follows that
Tyt + O) = 2y + I+ ga*S (e Fr (b, 2y, ), (6 [0, k— o0)
Set Fy(ty+ =z, v} is compact and, therefore, from the sequence Mk (k= 1, 2,...) we can choose a
subsequence converging to the limit A, & F,{ty, %4 »). For simplicity of notation we assume
that by -k, e Fi {4y, z,, v} @8 k-—oo. Then we arrive at (2.14) wherein gr= g* + by — h,. From (2.14)
— {2.17) follows _ .
;?f) giiil-aAc (o % 2(2), 8 a'1+a>g_i:i Aclt, z,, 2, (-} 800>
inf Dye(ty, z,3{ {1, B, ke Fylt,, z,, v), z{-}e X) (te Zas V)
h

Here again >0 is arbitrary, and, therefore, we obtain the second of inequalities (2.11). In-
equalities (2.12) are proved by the same scheme.
From Theorem 2.1 and Lemmas 2.1—2,3 follows

Theorem 2.2. 1In order that a function c(+) belonging to class Lip be the potential of
differential game (1.1)— (1.3), it is necessary and sufficient that it satisfy the boundary
condition (2.1) and that the inequalities

1 o
fgg her,gf;fx,. R Doclty z) | (1, ) <<O,
inf sup D¥elt,, 2 [ (1,h) >0
ueEP heF L, x,, v}
be fulfilled at each position (f, z,) = (— o, 9 X B",

In /13/ it was remarked that in the formulation of the necessary and sufficient conditions
for the potential ¢ {-)the upper derivative numbers can be replaced by the lower derivative
numbers and Vice versa; this has turned out tobe unjustified and to date we have been un~
albe to prove it or to refute it.

By Dif we denote the collection of functions ¢ (-) which at any point (f,, ¥y) & (— oo, §) X
R" have a derivative along any direction (1, k). h = R". For a function ¢ () & Lip N Dif we
can refine Theorem 2.2 as follows.

Theorem 2.3. In order that a function ¢ (-) belonging to class Lip ) Dif be the potential
of differential game (1.1)— (1.3}, it is necessary and sufficient that it satisfy the boundary
condition (2.1} and that the inequalities

max  min De{ty, z) [, By O (2.18)

TEQ REF %)

min  max  Delt,, ) {1, i) =0
UEP ASFAx,x,1)

be fulfilled at each position (4, 2,) = (— o0, 8) X R* .
We note here that the maximum and the minimum are reached here, since for a function ¢ (-)
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of class Lip () Dif the mapping h — D ¢ (t,, z4) | (1, h) satisfies a Lipschitz condition, the multi-
valued mappings v~ F, (ty, 24, v) and u —~ F, (¢, x4, &) are continuous, and the sets F| (t,, 4, V),
Fy (ty, z4, u), P and Q are compact.

o

Notes. 1°. Theorems 2.1— 2.3 have been formulated for a potential defined in the whole
position space (— w0, 4] X R™ It can be shown that they remain valid in any domain of the
form

{(ty 2)t to << 2 <D, a<clty 2) <P}
2° If function ¢ (.) is differentiable at point (¢, zr,) then

Dc (t,, z,) | (1, k) = 8c (t,, z,)/0t + k' grady c (¢,, x,)
Therefore, equality (1.5) follows from (1.2) and (2.18), i.e., we obtain the necessary condi-

tion stated at the end of Sect.l for the potential.

3°.  The results obtained above carry over to the case of differential games in which

condition (1.2} can be violated. A transition from the payoff functions (1.3) to payoffs of
other types is possible as well; for example, ¥ (z (:)) = min; 0 {(t, x (¢)) for ¢, <<t <% . The corres-
ponding results have been formulated in /13/.

3. Let us determine certain classes of direction-differentiable functions. Let I and J
be finite sets, ¢;; (:): (— oo, 8] X R* — R (i = I, j = J) be continuously differentiable functions.
We define a piecewise-smooth function :

(¢, z) = ¢ (t, ) = min max ¢;; (¢, z) (3.1)
_ el jel
The piecewise-smooth function if direction-differentiable and the formula

De (ty, x,) (1, h) = min; max; [9¢;; (ty, x,)/0f + I grad, ;5 (t,, )1, (3.2)

iEIO(t*aI*)v jE'IQ(t*’x*’ l)
Toty, 20 =0 =T aX @iy by, 24) = ¢ (t4o 20}
JE

Joltyr zs ) ={o =T : m;jf @35 (bar Ta) = Piso (Cr Tud}
j

is valid /1/. We introduce one more type of direction-differentiable functions c¢(-). Let §
be a nonempty set. Let Il be some set of scalar functions = (-): S = R. A functional mix: Il —

R is defined on set Il . The value that the operation mix associates with the function = (-)
is denoted MiX % (s), We assume that the functional mix has the following properties., If

%
n()eTI, re R, then the functions s~ n(s) 7 and s~ |r|n(s) as well belong to II

and the equalities
mix (r + n(s)) = r + mix nt (s), mix |r| 7 (s) = | r | mix n (s)
B s s §
are valid. If a; ()Tl (i=1,2) and a1, (s) < my (s) (s << ), then
mix 5w, (s) < mix m, (s)
s s
" Let (¢, 2) — ¢ (t, ) be a continuous function. We say that function ¢ (:) is regular at the

point (f,, z,) & (— o, ¥) X R™ if the relations

4 (t, .Z) = mixs (P (tv Z, S) ((tv .12) E Q(l (t*v .23*)) (3-3)
4 (t*v 'z*) = (g, Ty 3) ~(s= S)
O (b To) = {(t, 2): e <ty T, 72— 2 || < @}

are fulfilled for some a & (0, & —1,). Here the function ¢ (:): Og (f4, x4) X S = R satisfies
the following conditions: grad; ¢ (¢, z,s) and the right derivative 3¢ (f,,, 24, $)/0t exist for any
s = §; furthermore, -
lim  sup @ x,s) — @ (tys Ty 5) — (t — t,) 0 (Ly, 24, 5)/0L —
(1, )=>(L, %) 58
(@ — 24) grads @ by, 24, ) [ ([t — Ly | - [ — 24 ) =0
su}; | 0@ (ty, Ty, H0z; | << oo (i=1,..., n)
S

In (3.3) mix is an operation of the form indicated. It is assumed that

¢t 2, ) =M, [0¢ (ty, T4 *)dt -+ R grads ¢ (ty, 24 N1
V(t, 2} & Oq (tg, T4), h &= R

A function ¢ (-) of form (3.3) is differentiable at point (¢, z4) along the direction (4, h), and
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De (ty, 24) | (1, B) = mix [0¢ (ty, T4, 8)/0¢ + 1’ grad @ (2, 7, 9] (3.4)
3 x

We note that the above-defined properties of operation. mix coincide completely with the
properties, indicated in /6/, of the functional Val(:):0 — Val (0), where Val (6) is the value
of a differential game with payoff ¢ (for a fixed initial position).

Using the expressions for derivatives (3.2) and (3.4) we can make Theorem 2.3 concrete
for piecewise-smooth functions (3.1) and for functions ¢ (-) regular in the domain (— oo, 9) X
R™

In conclusion we present a corollary to Theorem 2.3 for an optimal control problem. 1In
this problem we are required, by choosing a programmed control u (-): [f, 8] — P, to minimize
the value of functional o (z (¥, ¢, x4, u ('), where =z (-, ly, Z4, 4 (-)) is amotion of the controlled

system W) =F 2@, u@®), ) = 2y

For simplicity we assume that the set F (f,7) = {f (¢, 7, u): u & P} is convex for any point (#, ), The
quantity po (fss Z4) = ming.y o (@ B, 74, T4, ¥ (+))) is called the optimal result in the control problem
and the function (f, z4) = Py (t4, &4) is called the potential in the control problem. The potential
0o () coincides with the potential ¢, (') of the differential game in which f (¢, z, u, v) = f (¢, «,

u) +v, ve Q@ = {0} C R* i.e., the second player is in fact absent. Assume that the func-
tions ¢ (+) and f(-) are differentiable. Then, according to /5/, the potential p, () is direct-
ion-differentiable. The next theorem is a corollary of Theorem 2.3.

Theorem 3.1. 1In order that the function (¢, z) = o {f.2) be the potential in the control
problem being examined, it is necessary and sufficient that the relations

minDp @ 2) | (1, FE 2, w) =0 (3.5)
ucsP

p(d z)=0(), t=(— o, d), ze=R" (3.6)

be fulfilled.
We remark that a necessary condition for potential gy (:), close to equality (3.5), was
obtained in /5/.
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